Physel.ru

Физика, механика и т.п.

  • Full Screen
  • Wide Screen
  • Narrow Screen
  • Increase font size
  • Default font size
  • Decrease font size

58. Электромагнитная теория света. Шкала электромагнитных волн.

E-mail Печать PDF
Теория электромагнитных волн позволила объяснить с единой точки зрения множество разнообразных электромагнитных явлений. Но из этой теории вытекал еще один вывод огромной важности.

Пользуясь данными, полученными из измерения чисто электрических величин (сил взаимодействия между токами и между зарядами), Максвелл смог вычислить скорость, с которой должны распространяться электромагнитные волны. Результат оказался поразительным: скорость получилась равной 300 000 км/с, т. е. совпала с измеренной оптическими способами скоростью света. Максвелл выдвинул тогда смелое предложение, что свет по природе своей есть электромагнитное явление, что световые волны — это лишь разновидность электромагнитных волн, а именно, волны с очень высокими частотами, порядка 1015 герц.

Опыты Герца, доказавшие существование электромагнитных волн и позволившие подтвердить заключение Максвелла о том, что эти волны распространяются с такой же

Рис. 124. Приборы Лебедева для опытов с электромагнитными волнами длиной 6 мм
скоростью, как и свет, послужили сильным доводом в пользу электромагнитной теории света. Множество других явлений, как из числа известных ранее, так и открытых впоследствии, показало настолько тесную связь между оптическими и электромагнитными явлениями, что электромагнитная природа света превратилась из предположения в твердо установленный факт.

Исследования, производившиеся в самых разнообразных областях физики, позволили установить, что диапазон частот или длин электромагнитных волн чрезвычайно широк. В этой главе мы ограничиваемся только электромагнитными волнами в узком понимании этого термина, т. е. такими, длина которых превышает сотые доли миллиметра и которые в большинстве своем используются в радиотехнике и поэтому называются радиоволнами. С другими, более короткими электромагнитными волнами, с их особыми свойствами, со способами их получения и наблюдения мы познакомимся в следующих разделах. Однако уже здесь мы приведем диаграмму, которая дает представление обо всей шкале электромагнитных волн.

Рис. 125. Шкала электромагнитных волн: 1 ГГц=103 МГц=109 Гц 1нм=10-3 мкм=10-9 м
Эта диаграмма (рис. 125) построена несколько необычно ввиду огромного различия длин волн. На горизонтальной прямой на равных расстояниях друг от друга нанесены метки, соответствующие длинам, каждая из которых отличается в десять раз от соседней. Это и есть шкала длин волн l, начинающаяся на нашей диаграмме слева с l=10 км и заканчивающаяся значением l=0,001 нм. Разумеется, 10 км слева и 0,001 нм справа — это границы рисунка, а не самой шкалы электромагнитных волн, которую можно представить себе продолженной в обе стороны.

Под шкалой длин волн l нанесена шкала соответствующих им частот колебаний v. Продолжая шкалу влево, мы переходим ко все более длинным волнам, т. е. ко все более низким частотам, пока не дойдем, наконец, до частоты v=0, т. е. до постоянного, не меняющегося со временем тока. Можно сказать, что такому току соответствует бесконечно большая длина волны, но это, конечно, чисто формальное утверждение. С уменьшением частоты условия излучения делаются все хуже (§ 55), и постоянный ток, который должен был бы излучать «бесконечно длинную» волну, просто ничего не излучает. Нашу диаграмму можно продолжать и вправо, переходя ко все более высоким частотам и соответственно все более коротким волнам.

На диаграмме указаны участки l (или n), занимаемые различными видами электромагнитных волн. Как сказано, в этой главе мы ограничиваемся только левым участком, который начинается с «бесконечно длинных» волн и кончается в области сотен микрометров, т. е. тянется от «нулевой частоты» до частот в десятки тысяч гигагерц. Мы видим, что этот участок волн, которые получают электрическими способами, перекрывается на своем коротковолновом конце с инфракрасными (тепловыми) волнами. Это значит, что волну, длина которой, например, 0,05 мм можно получить и посредством электрических колебаний, и тепловым способом, т. е. при излучении нагретого тела.

Еще не так давно на шкале электромагнитных волн не было таких перекрываний, а, наоборот, имелись пробелы. В частности, был пробел между электромагнитным диапазоном (в узком смысле) и инфракрасными волнами. Электромагнитные волны были получены длиной до 6 мм (Лебедев), а тепловые — до 0,343 мм (Рубенс).

В 1922 г. советский физик Александра Андреевна Глаголева-Аркадьева (1884— 1945) ликвидировала этот пробел, получив электромагнитные волны длиной от |1 см до 0,35 мм с помощью придуманного ею прибора, названного массовым излучателем.

Схема этого прибора показана на рис. 126. В сосуде 1 находятся мелкие металлические опилки, взвешенные в трансформаторном масле. Не показанная на рисунке мешалка все время поддерживает опилки во взвешенном состоянии, не давая им осесть на дно. Вращающееся колесико 2 захватывает смесь и окружается ею наподобие шины. С помощью Проводов 3, присоединенных к индуктору, через смесь пропускается искровой разряд. Металлические опилки образуют при своем движении множество случайных пар, которые играют роль маленьких вибраторов и при разряде излучают короткие волны. Так как размеры случайно образующихся вибраторов различны и колебания в них не гармонические, а затухающие, в излучении присутствуют одновременно все длины волн указанного выше диапазона. Можно сказать, что массовый излучатель испускает «электромагнитный шум», а не «аккорд» или «ноту».

Рис. 126. Массовый излучатель Глаголевой-Аркадьевой
В массовом излучателе преодолены две основные трудности, неизбежно возникающие при попытке использовать один-единственный вибратор столь малых размеров. Во-первых, такой единственный вибратор дает ничтожно слабое излучение. В массовом же излучателе одновременно работает много вибраторов. Во-вторых, в одном вибраторе опилки быстро сгорают от искры. В приборе Глаголевой-Аркадьевой этого не происходит, так как в области разряда опилки непрерывно сменяются.

Добавить комментарий

Защитный код
Обновить

You are here: