Physel.ru

Физика, механика и т.п.

  • Full Screen
  • Wide Screen
  • Narrow Screen
  • Increase font size
  • Default font size
  • Decrease font size

§ 238. Ускорители и экспериментальная техника.

E-mail Печать PDF
За последние десятилетия в физике элементарных частиц произошел настоящий переворот, во многом изменивший наши представления о природе материи. Этот переворот был связан прежде всего с быстрым развитием ускорителей и экспериментальной техники. Рост энергии ускорителей, на которые ложится основная тяжесть исследований в области элементарных частиц, играет здесь важную роль по нескольким причинам.

1.С ростом энергии появляется возможность образования новых типов элементарных частиц с большими массами. При меньших энергиях такие частицы просто не могут рождаться в силу законов сохранения энергии и импульса (порог по энергии — см. упражнение 58 к гл. XXV).
2.Ускорители можно сравнить с гигантскими микроскопами, которые позволяют изучать пространство на очень малых расстояниях, сравнимых с длиной волны де Бройля для ускоренных частиц. Так, частицы с энергией 1 ТэВ=103 ГэВ характеризуются длиной волны де Бройля l=h/p»1•10-16 см. С их помощью можно зондировать области пространства вплоть до 10~16 см, где могут проявляться какие-то новые закономерности физики микромира, не замеченные на больших расстояниях.
3.С ростом энергии частиц меняются свойства взаимодействий между ними и характеристики уже известных процессов. Может оказаться, что определенные черты этих явлений при высоких энергиях начинают проявляться более четко. Именно в опытах при очень больших энергиях удалось установить общую природу слабых и электромагнитных сил.

В последние годы были созданы гигантские, даже по сравнению с огромным Серпуховским ускорителем (рис. 393), ускорители, позволившие примерно на два порядка увеличить энергию, доступную для образования новых частиц. При этом важную роль начали играть опыты на так называемых ускорителях-накопителях со встречными пучками.

Чем же различаются между собой эти ускорители?

В опытах на «обычных» ускорителях, или, как еще говорят, на ускорителях с фиксированными мишенями, исследуются процессы взаимодействия ускоренных частиц с «неподвижными мишенями» — нуклонами и ядрами атомов вещества, из которого сделаны мишени. При этом только сравнительно малая часть энергии ускоренных протонов или электронов может быть затрачена «полезным образом» — на образование новых частиц. Так как налетающие на мишень бомбардирующие частицы имеют большой начальный импульс, то, в соответствии с законом сохранения, этот импульс должен уноситься всеми вторичными частицами, образующимися при взаимодействии. Эти частицы, конечно, будут обладать и значительной кинетической энергией. Таким образом, большая часть начальной энергии переходит в кинетическую энергию продуктов ядерной реакции, и только сравнительно небольшая ее доля может быть затрачена на образование новых частиц.

Напомним решение задачи 58 (гл. XXV), в которой было показано, что для образования протон-антипротонной пары в реакции р+р+р+р+р+р~ первичный протон должен обладать кинетической энергией Wк>6mc2, хотя «полезные затраты» энергии составляют всего 2mc2. Вся остальная энергия переходит в кинетическую энергию вторичных частиц. Подобная картина имеет место и в других процессах.

В отличие от ускорителей с фиксированными мишенями, накопители на встречных пучках позволяют использовать всю начальную энергию. Основная идея здесь заключается в том, чтобы создать два очень интенсивных и хорошо сфокусированных пучка ускоренных частиц и, направив их навстречу друг другу, осуществить лобовое соударение между ними. При этом суммарный импульс двух сталкивающихся частиц равен нулю, и образующиеся вторичные частицы могут обладать очень малой кинетической энергией (порог рождения соответствует образованию покоящихся частиц). Так, при встречных соударениях двух протонов с кинетическими энергиями Wкр³mc2 уже могут рождаться протон-антипротонные пары, и мы имеем значительный выигрыш в энергии.

Совсем недавно в Европейском центре ядерных исследований (ЦЕРН, Женева) были проведены опыты со встречными пучками протонов и антипротонов, причем энергия каждого пучка составляла 270 ГэВ. В этих экспериментах были найдены частицы с массой, почти в 100 раз превосходящей массу протона. Для опытов с фиксированной мишенью с такой же «полезной энергией» потребовалось бы создание ускорителя, рассчитанного на энергию 155 ТэВ!

Однако было бы неправильно думать, что следует создавать только ускорители-накопители со встречными пучками. Ускорители с фиксированными мишенями, уступая накопителям по доступной энергии, обладают в свою очередь рядом важных преимуществ. Прежде всего становится возможным проводить исследования с разнообразными пучками нестабильных или нейтральных частиц, которых нет на ускорителях со встречными пучками. Кроме того, на ускорителях с фиксированными мишенями можно изучать более редкие явления, так как здесь удается получить значительно большее число соударений. Поэтому исследования с «обычными» ускорителями и со встречными пучками взаимно дополняют друг друга и вместе дают очень важную информацию о физике элементарных частиц. В табл. 12 приведены основные параметры самых больших существующих и строящихся ускорителей.

Для проведения опытов на современных ускорителях, помимо больших пузырьковых камер (§ 235), потребовалось создание огромных и очень сложных экспериментальных установок, которые по своим масштабам сравнимы с самими ускорителями (рис. 422). В состав этих установок входят большие магнитные спектрометры, тысячи быстродействующих сцинтилляционных счетчиков, десятки тысяч газоразрядных детекторов, очень напоминающих пропорциональные счетчики (о таких счетчиках говорилось в § 213). Эти и другие приборы, входящие в экспериментальные установки, позволяют определять траектории частиц,
Таблица 12. Самые большие ускорители
А. Ускорители с фиксированными мишенями

Б. Накопители со встречными пучками

Таблица 12 (продолжение)

измерять их энергию, импульс, скорость, ионизацию, идентифицировать частицы и подробно исследовать характеристики взаимодействий. В состав таких установок обязательно входят несколько электронно-вычислительных машин,

Рис. 422. Общий вид экспериментальной установки UA-1, на которой проводились исследования р~р-соударений на самом большом в мире ускорителе-накопителе со встречными протонным и антипротонным пучками (SPS-коллайдер ЦЕРН, см. табл. 12). Установка UA-1 — это огромный магнитный спектрометр для измерения импульсов вторичных частиц, образующихся в р~р-соударениях. Частицы регистрировались в газоразрядной камере (она видна в центре установки). Камера представляет собой совокупность большого числа газоразрядных детекторов частиц, напоминающих пропорциональные счетчики. С помощью этих детекторов определяются траектории частиц. В состав установки входит также большое число сцинтилляционных счетчиков
с помощью которых быстро обрабатывается полученная информация, настраиваются многочисленные элементы аппаратуры, контролируется затем правильность их работы, получаются первые физические результаты, позволяющие следить за проведением эксперимента в целом. Полученные в процессе измерений огромные объемы информации после некоторого предварительного отбора записываются на магнитные ленты и затем обрабатываются на самых больших и быстродействующих электронно-вычислительных маши-

Рис. 423. Снимок с дисплея ЭВМ, работающей вместе с установкой UA-1 (рис. 422). На снимке зарегистрировано одно из до-соударений при энергии 270 ГэВ (р~)+270 ГэВ (р). Информация со всех детекторов установки, обработанная на ЭВМ, позволяет определить траектории частиц и получить полную картину взаимодействия, несколько напоминающую снимки с пузырьковых камер. Импульсы частиц измерялись по кривизне их треков в магнитном поле. Как видно из снимка, взаимодействия при таких высоких энергиях носят очень сложный характер: в них образуется большое число вторичных частиц
нах. На рис. 423 приведен снимок с дисплея ЭВМ, на котором показан вид одного из событий, зарегистрированных на установке UA-1 (рис. 422). Вот с какими сложными процессами приходится иметь дело в современном физическом эксперименте.

Комментарии  

 
+2 #1 13.10.2010 12:57
всегда интересно узнать что то новое
Цитировать
 

Добавить комментарий

Защитный код
Обновить

You are here: