Physel.ru

Физика, механика и т.п.

  • Full Screen
  • Wide Screen
  • Narrow Screen
  • Increase font size
  • Default font size
  • Decrease font size

§ 294. Кипение.

E-mail Печать PDF
Поместим стеклянный сосуд с холодной водой на горелку и будем наблюдать. Скоро дно и стенки сосуда покроются пузырьками; об их происхождении говорилось в § 260. В этих пузырьках, как мы знаем, находятся воздух и пар воды. Пузырьки появляются в тех местах стенок сосуда, где нет полного смачивания. Такими местами могут явиться следы жира на стенке или мелкие трещинки на ней.

Наблюдая за пузырьком при неизменной температуре, мы видим, что он сохраняет свои размеры; значит, давления изнутри и извне на его поверхность взаимно уравновешиваются. Так как внутри пузырька находится воздух, количество которого надо считать постоянным, то это равновесие является устойчивым. Действительно, если бы по какой-либо случайной причине пузырек расширился, то давление воздуха в нем, согласно закону Бойля — Мариотта, уменьшилось бы и внешнее давление, остающееся при этом почти неизменным, снова уменьшило бы пузырек. Рассуждая таким же образом, легко выяснить, почему случайно уменьшившийся пузырек сейчас же снова расширится до прежнего объема. При повышении температуры пузырек постепенно расширяется настолько, что сумма давления воздуха и пара в нем остается равной внешнему давлению. Однако когда пузырек сделается достаточно большим, выталкивающая сила воды заставит его оторваться, подобно тому как отрывается слишком тяжелая капля воды, повисшая на крыше (рис. 372). При этом между пузырьком и стенкой сосуда образуется все сужающаяся воздушная перемычка (рис. 483) и, наконец, пузырек отрывается, оставляя у стенки небольшое количество воздуха, из которого с течением времени разовьется новый пузырек.

Поднимаясь кверху, оторвавшиеся пузырьки снова уменьшаются в размерах. Почему это происходит? Эти пузырьки содержат пар воды и немного воздуха. Когда пузырек достигает верхних, еще не успевших нагреться слоев воды, то значительная часть водяного пара конденсируется в воду и пузырек уменьшается. Это попеременное увеличение и уменьшение пузырьков сопровождается звуками: закипающая вода «шумит». Наконец, вся вода прогревается в достаточной мере. Тогда поднимающиеся пузырьки уже не уменьшаются в размерах и лопаются на поверхности, выбрасывая пар во внешнее пространство. «Шум» прекращается, и начинается «бульканье» — мы говорим, что вода закипела. Термометр, помещенный в пар над кипящей водой, все время, пока вода кипит, показывает одну и ту же температуру, около 100 °С.

Очевидно, что при кипении давление паров, образующихся внутри пузырьков у дна сосуда, таково, что пузырьки могут расширяться, преодолевая атмосферное давление, действующее на свободную поверхность воды, а также давление столба воды. Мы приходим к выводу, что кипение происходит при такой температуре, при которой давление насыщенного пара жидкости равно внешнему

Рис. 483. Прилипшие ко дну сосуда с жидкостью и отрывающиеся пузырьки газа
давлению. Температуру пара кипящей жидкости называют температурой кипени.
Из приведенных рассуждений ясно, что температура кипения должна зависеть от внешнего давления. Это можно легко наблюдать. Поставим стаканчик с теплой водой под колокол воздушного насоса. Откачивая воздух, мы можем заставить воду вскипеть при температуре значительно ниже 100 °С (рис. 484). Наоборот, при повышении внешнего давления температура кипения повышается. Так, в котлах паровых машин воду нагревают под давлением в несколько атмосфер. Температура кипения при этом значительно превосходит 100 °С. При давлении около 15 атм температура кипения воды близка к 200 °С. Когда говорят о температуре кипения жидкости, не указывая давления, всегда имеют в виду температуру кипения при нормальном давлении (760 мм рт. ст.).

Зависимость температуры кипения от давления дает нам новый способ измерения

Рис. 484. При откачивании воздуха из-под колокола вода, имеющая температуру значительно ниже 100 °С, закипает

Рис. 485. Гипсотермометр
атмосферного давления. Измерив температуру кипения воды, можно по таблицам давления пара при разных температурах судить об атмосферном давлении. Если, например, находясь в горах, мы определили, что температура кипения воды—около 90 °С, то отсюда можно заключить (табл. 18), что давление воздуха составляет 526 мм рт. ст. Специально приспособленные для таких измерений термометры называют гипсотермометрами. Они устроены так, что дают возможность отсчитывать температуру около 100 °С с большой точностью (рис. 485).

Температуры кипения различных жидкостей (при нормальном давлении) сильно разнятся между собой. Это можно видеть из табл. 19.
Таблица 19. Температура кипения некоторых жидкостей при 760 мм рт. ст.

Различие температур кипения разных веществ находит большое применение в технике, например при разделении нефтепродуктов. При нагревании нефти раньше всего испаряются наиболее ценные, летучие ее части (бензин), которые можно таким образом отделить от «тяжелых» остатков (масел, мазута).

Различие температур кипения веществ связано с различием в давлении пара при одной и той же температуре. Мы видели, что пар эфира уже при комнатной температуре имеет давление, превышающее половину атмосферного. Поэтому, чтобы давление пара эфира достигло атмосферного, нужно небольшое повышение температуры (до 35 °С). Иначе дело обстоит, например, у ртути, имеющей при комнатной температуре совсем ничтожное давление. Давление пара ртути делается равным атмосферному только при значительном повышении температуры (до 357 °С).

294.1. Где кипящая вода горячее: на уровне моря, на горе или в глубокой шахте?
294.2. Для некоторых производственных процессов в пищевой промышленности (например, для варки свеклы) требуется температура воды выше 100 °С. Каким средством этого можно достичь?
294.3. Пользуясь табл. 18, определите наивысшую температуру, которую может иметь вода при давлении 2 и 0,2 атм.
294.4. На рис. 486 изображен автоклав (прибор, употребляющийся в химических производствах для процессов, требующих более высокой температуры, чем температура кипения находящейся в нем жидкости). Это — прочный котел с манометром 1, наглухо закрывающийся крышкой так, что пар из него может уходить только через предохранительный клапан 2. Какой температуры достигнет при нагревании котла находящаяся в нем вода, если площадь основания клапана равна 0,75 см3 и расстояние от опоры 3 до клапана 2 равно 6,5 см, а до гири 4—18 см? Масса гири 1 кг. Массой стержня можно пренебречь.
294.5. Попробуйте вскипятить воду в узкой пробирке, наполненной до края, нагревая ее у дна. Почему в этом случае пузыри выбрасывают воду из пробирки?
Примечание. Нечто подобное происходит в громадных размерах в природе в так называемых гейзерах (в СССР на Камчатке, а также в ряде других стран, например в Исландии). Гейзер — периодически действующий фонтан, выбрасывающий горячую воду из узкого вертикального жерла в земле (рис. 487). Образование пара происходит на глубине нескольких десятков метров. Давление на такой глубине водоема может достигать нескольких атмосфер и вода может нагреваться значительно выше 100 °С. Когда внизу образуются пузыри пара, то часть воды вытекает, давление падает и парообразование перегретой воды идет с такой интенсивностью, что остающаяся вода выбрасывается на большую высоту.
294.6. Вскипятите воду в круглодонной колбе и закупорьте ее. Переверните колбу. Если теперь на дно колбы положить немного снега или облить ее холодной водой, то вода в колбе закипит. Объясните явление.

Комментарии  

 
+8 #3 28.11.2010 07:04
я ее неШел!!!..
Цитировать
 
 
+2 #2 26.11.2010 16:53
ну чё долго искал?
Цитировать
 
 
+2 #1 31.10.2010 06:21
ура нашел эту тему
Цитировать
 

Добавить комментарий

Защитный код
Обновить

You are here: